Machine Translation Turing Test

Machine Translation
Will computers ever reach the quality of professional translators?

[Could not find the bibliography file(s)

The U.S. government spent 4.5 billion USD from 1990 through 2009 on outsourcing translations and interpretations [BIBCITE%%0%]. If these translations were automated, much of this money could have been spent elsewhere. The research field of Machine Translation (MT) tries to develop systems capable of translating verbal language (i.e. speech and writing) from a certain source language to a target language.

Because verbal language is broad, allowing people to express a great number of things, one must take into account many factors when translating text from a source language to a target language. Three main difficulties when translating are proposed in [BIBCITE%%1%]: the translator must distinguish between general vocabulary and specialized terms, as well as various possible meanings of a word or phrase, and must take into account the context of the source text.

Machine Translation systems must overcome the same obstacles as professional human translators in order to accurately translate text. To try to achieve this, researchers have had a variety of approaches over the past decades, such as [BIBCITE%%2%]. At first, the knowledge-based paradigm was dominant. After promising results on a statistical-based system ([BIBCITE%%3%]), the focus shifted towards this new paradigm.

Continue reading “Machine Translation Turing Test”