Previously we calculated the fuel requirements of rockets to reach escape velocity. In that calculation, we did not take into account the effect of gravity during the fuel burn and underestimated the fuel requirements. We improved on this through a simulation better approximating reality. This simulation takes into account the force of gravity during the burn, as well as that force weakening as the rocket increases its distance from Earth, and takes into account the necessary escape velocity decreasing as the rocket’s distance to Earth grows. On this second post, Basker V commented that a closed-form solution can be found when the burn time is sufficiently small, allowing the rocket’s distance to Earth to be considered constant during the burn. In effect, this enables us to ignore both the diminishing force of gravity and decreasing escape velocity. Let’s find this closed-form.

Continue reading “Closed-Form Rocket Fuel Requirements”# Tag: Energy

# Escape Velocity (And: How Much Fuel Do Rockets Need?)

During the launch of a rocket, the Earth’s gravitational field is pulling the rocket back. The rocket needs a certain speed to be able to escape from the Earth’s gravitational field, such that it won’t fall back to Earth nor get into an orbit around it. Escape velocity is the speed a rocket requires to be able to escape from a body without having to burn more fuel later during the maneuver. For a body as massive as Earth, the required velocity is relatively high, and this is why rockets literally need tonnes of fuel.

In this post, by making a few simplifications and using the rocket equation that we found earlier, we will derive an equation to calculate the amount of propellant needed to escape from Earth.

Continue reading “Escape Velocity (And: How Much Fuel Do Rockets Need?)”

# The Rocket Equation

Rockets in space, like all other objects, have to accelerate to change velocity. But space is a vacuum, so there is nothing to push against to create force. Instead, rockets accelerate by using the *conservation of momentum*. The momentum of an object is equal to the object’s mass multiplied by the object’s velocity: \vec{p} = m \vec{v}. In a closed system, the total momentum remains constant: \vec{p}_{0} = \vec{p}_{t}.

A rocket carries propellant that it expels at high velocities to accelerate. Imagine a rocket moving in space; at first the rocket is not expelling propellant and so its momentum does not change. Then it expels a part of its propellant. That propellant’s momentum is equal to its mass multiplied by its velocity. The rocket and propellant are part of a closed system, so the momentum of the rocket has to change such that the total momentum (that of the rocket plus that of the propellant) is equal to the momentum of the rocket before it expelled the propellant. As a result, the rocket gains velocity in direction opposite to that of the propellant.

Let’s find out how much velocity the rocket gains!