Nativism vs. Empiricism: Ramifications for Artificial Natural Language Processing

[bibshow file=nativismvsempiricism.bib sort=firstauthor order=asc]
Note: This is an essay I wrote for the subject Philosophy of Cognitive Science that was part of my bachelor’s course. I think it might be interesting to others, so I’ve decided to publish it here. The format is adapted slightly to be more suitable for this blog; the content is unchanged.

Notebook Language

In the field of artificial intelligence, humans are often used as prime examples of adaptable agents with general intelligence. The goal of some artificial intelligence researchers is to arrive at an artificial general, or human-level, intelligence. These agents should be able to perform many of the same tasks with the same adaptability as humans are able to. One of the few empirical certainties in the endeavour of creating such intelligent agents is that the natural, human intelligence works. Thus, there is merit to artificial intelligence research that strives to mimic human intelligence by modelling human mechanisms.

An intriguing and far-from-settled debate concerns the origin of human knowledge, skills, abilities and thought in general. The major theories can be identified as lying somewhere between the two extremes of full-blown nativism and full-blown empiricism [bibcite key=gross2012innateness]. Nativistic theorists would argue for innate knowledge; at least some of our capabilities arise from hard-wired pathways in our nervous system that are available at birth. In contrast, empiricists would argue that these capabilities are learned from experience utilizing the brain’s various capacities for learning. For example, a baby’s suckling after birth is likely innate, whereas the behavioural pattern of brushing your teeth is likely learned. It is still unknown which combination of these extremes in this seemingly easy distinction is correct.

When striving to model human capacities in an artificial intelligence, knowing which parts of human intelligence and other capabilities are hard-wired and which parts arise from experiences should be of particular interest to artificial intelligence researchers. In the following, we will look at the innateness (or lack thereof) of language parsing and acquisition. From this, recommendations will be made regarding the high-level design of an artificial natural language processor.

Continue reading “Nativism vs. Empiricism: Ramifications for Artificial Natural Language Processing”